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ABSTRACT

Tentative estimates of the " sharp"- rising overpressures as
a function of duration which represent a lethal hazard to the 70-lrg
animal 1, 50 and 99 per cent of the time were presented. The
predictions were basec on interspecies correlations and extrapo-
lations encompassing blast-tolerance data for six mammalian
species. The tentative application of the data to indicate humran
blast tolerance was discussed and relevant uncertainties in the
estimates were emphasized. It was also pointed out that bio-
logic tolerance would be different for air-blast pulses having
non-ideal wave forms frequently associated with various geome-
tries of exposure.

Selected pathophysiological information pertinent to the bio-
logical response following blast exposure was given; namely,
survival time and selected postshot observations of dogs and
goats.
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Experiments reported herein were conducted according to the
"Rules Regarding Animal Care" established by the American Medi-
cal Association.
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INTRODUCTION

Biological effects of air blast are commonly segregated arbi-
trarily into three categories: (1) primary effects -those caused by
the overpressure itself; (2) secondary effects -those due to the im-
pact of objects, including fragments of the explosive container if
any, set in motion by the blast wave; and (3) tertiary effects -those
associated with displacement of a biological target, be they accel-
erative or decelerative in cha.racter. This presentation deals only
,vith the primary effects of blast.

The purpose of this report is fivefold: first, to present selected
experimental data useful in relatively assessing blast tolerance
among six mammalian species of animals exposed to "sharp"-rising
overpressures of various durations; second, to set forth one analyti-
cal procedure for extrapolating the data to predict tolerance ior a
70-kg mammal; third, to formulate tentative estimates for human
tolerance to ideal or near-ideal wave forms; fourth, to describe
experiments showing that variations of the geometry in which expos-
ure to air blast occurs can alter the effect quantitatively from that
expected in "free-field" situations; and finally, to present lethality-
time data and selected postshot observations of animals along with
the lesions believed responsible for the observed effects.

LETHALITY DATA FOR EXPERIMENTAL ANIMALS

1-4
In previous reports, experiments were described wherein

experimental animals were exposed to "sharp"-rising overpressures
produced by a variety of shock tubes (! 685 animals) and by high-
explosive charges of different magnitudes (993 animals). Subse-
quently, additional dog and goat studies, as yet unpublished, were
carried out with high explosives and shock tubes (296 animals to
date). In all instances the tolerance of the aninmal was assessed
using lethality as an end point; also, the overpressures associated
with 50 per cent lethality (LD5 0 ) were computed from probit curves
relating per cent mortality to the magnitude of the overpressures for
pressure pulses of several durations.

The data are assembled in Figure I which shows the overpressures
producing lethality in 24 hours for six different species of animals as
a function of pulse duration ranging from about 0. 4 to 7000 msec.
Attention is directed to the fact that, though the curves for each ani-
mal species are flat for the longer-duration overpressures, they each
rise progressively for the shorter-duration pulses; i. e., there is for
each species a critical duraticn longer than which the lethal overpres-
sure remains fairly constant and, shorter than which, it rises signifi-
cantly. Also, it is clear that while the data generally show the larger
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animals are more tolerant to blast overpressures -especially for
the shorter-duration pulses, there specifically exists no completely
uniform relationship with body size except possibly at the extreme
left side of Figure i; viz., for very short-duration blast waves.

EXTRAPOLATION OF DATA

The LD50 Values

Using the experimental points in Figure I for the pulses of
400 msec duration, the LD50 over ressures for each species of
animal were, in a previous study, plotted against the average
body weight, as shown in Figure 2. A regression curve, fitted by
the least squares method and showing a standard error of the esti-
mate of 13. 9 per cent, was solved to obtain an extrapolated LD5 0
figure of 50.5 psi for a mammal weighing 70 kg.

A similar exercise to obtain LD5 0 values fcr the 70-kg mammal
applicable to pulse durations of 3, 5, 10, 30, 60 and 400 msec was
carried out in this study, except that the LD5 0 numbers for each
species at the pulse durations of interest were read from the
smoothed curves shown in Figure 1. The results are given in
TableT and shown graphically by the middle curve labeled LD5 0
in Figui e 3.

The LDI and LD99 Values

To obtain an estimate of the LD do3e for I and 99 per cent,
lethality applicable to the 70-kg animal, a probit regression equa-
tion was used having the following form:

y =a + b log x

y =per cent mortality in probit units

x =pressure dose, psi

a = intercept constant

b = slope constant

Given the LD5 0 values for the 70-kg mammal shown in Table 1,
one has y =5 (50 per cent mortality) and x =the LD 5 0 pressure. It
is also necessary to have a slope constant, b, for the equation to
allow solving for a, the intercept value. After this, one may solve
the probit equation obtained by substituting desired values for y and

-3-
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Table 1

RELATION BETWEEN "SHARP"-RISING OVERPRESSURE AND
PULSE DURATION REQUIRED FOR 50-PER CENT LETHALITY

Mean LD 5 0 Pressures in psi*

Species Body Weight Duration, msec 400 60 30 10 5 3

Mouse 2Z.00 g 29 29 29 29 29 29

Rat 192.00 g 36 36 36 36 36 36

Guinea Pig 445.00 g 34 34 34 34 34 34

Rabbit 1.97 kg 33 33 33 33 33 38

Dog 16.50 kg 49 49 49 60 80 106

Goat 22.20 kg 53 53 53 68 96 138

Mammal 70.00 kg 52 58 64 98 185 431

*All the LD 5 0 values were picked from the curves in Figure 1

except those for the 70-kg animal which were calculated.
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computing the x or overpressure figures.

Though there is no proven justification for believing that the
slor e constant for the 70-kg animal is the same for all durations of
overpressure nor for being absolutely sure that there is one value
for the slope constant for all the animals studied, the assumption
that these contingencies were so was made here and an average
value of b = 16. 151*was used to solve probit regression curves for
the extrapolated results which allowed calculation of the LDI and
LD99 overpressures. The use of the procedure yielded the results
given by the lower and upper curves of Figure 3, respectively.

There is specifically one study4 involving the four smaller
species of animals in which the slopes of the probit regression
equations applicable to each type of experimental animal were
tested for parallelism. Their slopes were not significantly dif-
ferent from one another. If one averages the adjusted slopes for
each species, one obtains b = 15. 371, a value probably not at vari-
ance with the figure b = 16. 151 mentioned above. Another study 3

also reported that probit regression curves for six species of ani-
mals were essentially parallel. The adjusted slope for the entire
series (569 animals) was 17. 159, also a figure for b very close to
that employed here.

ESTIMATION OF HUMAN BLAST TOLERANCE

One must approach the use of the extrapolated animal data to
predict human tolerance to blast overpressures with considerable
caution for many reasons. Several will be mentioned here. First,
the animal data presented above apply only to "fast"-rising overpres-
sures involving ideal or near-ideal wave forms. Therefore, any
application of the figures for the 70-kg mammal to man needs be
strictly limited to classical or near-classical wave forms, a fact
that will be emphasized later.

Second, a glance at Figure 2 giving the 400-msec data shows
that some animals are above and others below the regression curve.
One wishes to know whether human tolerance in truth is above or
below the "average" animal data and what are the quantitatively
applicable figures. Unfortunately, such numbers are currently
unavailable.

"-Obtained by adjusting all the dog and goat probit mortality
curves parallel.
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Third, for the shorter-duration overpressures, the lethality
curves progressively rise and any estimates of tolerance would
appear to be more uncertain than is the case for the longer-pulse
durations for which the lethality-duration curves are flat.

Fourth, the animal data apply to lethality assessed over a
24-hour period. Information applicable to the guinea pig is at hand 5

which shows that death from blast exposure may occur as late as
the 17th post-exposure day. Too, it is known that death following
exposure to blast can be delayed in man. 6

On the more positive side, three eventualities seem clear,
however; namely, (1) that the tolerance of the adult human is not
likely to be too far from the results obtained with six different
mammalian species; (2) that the pressure-duration relationship
demonstrated in animals also holds for the human case; i. e., quite
high overpressures are required for lethality if the pulse duration
is "short" and minimal overpressure will kill if the overpressure
durations are "long;" and (3) that tentative estimates of human
tolerance are justified on the basis of the considerable data at hand
provided allowances are made for the many uncertainties that obvi-
ously exist.

Accordingly, it is suggested that Figure 3 be taken as a guide
and the data adjusted to "fix" a range of figures likely to bracket
acute tolerance of adult man to air blast. The suggested adjust-
ment is 10 per cent above and 20 per cent below the mean animal
extrapolation presented above. Thus, Table 2 summarizes the
arbitrary and tentative LD 5 0 figures estimated for "sharp"-rising
overpressures of six durations ranging fzom 3 to 400 msec.

It it well to emphasize here that data are available7- 10 sug-
gesting that the overpressure values shown in Figures 1, 2 and 3
as well as those in Tables i and 2 may be incident or reflected shock
pressures as long as they are "sharp" rising; i. e., the application
of the incident plus the reflected pressure occurs almost instantan-
eously. For example, a biological target located against a reflecting
surface would receive a "sharp"-rising reflected overpressure of
60 psi at the range where an incident shock of 20 psi would occur.

Also to be emphasized is the statement that man's tolerance to
air-blast overpressures having other than classical wave forms can
be expected to be quite different; i. e., an animal's tolerance to
smooth-rising overpressuresl0 or those rising in steps sufficiently
separated in time is higher than is the case for ideal or near-ideal
pressure pulses. 5, 6

-8-
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Table 2

TENTATIVE ESTIMATE OF PRESSURE-DURATION
RELATIONSHIP FOR 50-PER CENT LETHALITY IN

ADULT HUMANS (70 kg)'

LD 5 0 Pressure Pulse Duration LD50 Pressure Pulse Duration
.psi sec psi rnsec

42-57 400 78-108 10

46-64 60 148-204 5

51-70 30 345-474 3

- Applies to "sharp"-rising overpressures of ideal or near-
ideal wave forms.

-- 9-



"FREE-FIELD" VS. "GEOMETRIC" SCALING

"Sharp"- rising blast waves occurring "free-field" are usually
distorted upon passing into structures. The primary blast hazard
therefore depends upon the wave form encountered in a given geome-
try. For instance, dogs tolerated long-duration overpressures of
over 100 psi when the pressure rose in a smooth manner and peaked
in 30, 60, 90, and 155 msec. 10 Also the resistance of animals to
overpressure increased when the latter was applied in two steps. 5, 6

Different species have been exposed to air-blast waves of long
duration applied in two steps by mounting them at various distances
upstream of a reflecting surface. 1, 5-8 The time interval between
steps (the time between the passing of the incident shoclk and the
return of the reflected shock) was a function of the animal's distance
from the reflecting plate. According to Figure 4, the tolerance of
guinea pigs and dogs to overpressure rose when the time between
shocks was increased beyond 0. 20 msec and 0. 40 msec, respec-
tively. There appeared to be a relation between species size and
the length of time between shocks associated with increased toler-
ance.

That the geometry of exposure can have a marked effect on
biological response expected in terms of "free-field" pressures can
be illustrated in the following experiments. Guinea pigs were
exposed to air-blast pulses of long duration while located in shallow,
deep, and deep-with-offset chambers mounted on a shock tube. I I
The results given in Table 3 show that the incident shock pressures
required to kill 50 per cent of the animals iT}-M-Teep, deep-with-
offset, and shallow chambers were 19. 5, 26. 8, and 34. 9 psi, respec-
tively. Thus, the amount of protection against the blast wave afforded
by the chambers may be taken in that order.

Obviously, the shock wave entering the deep and deep-with-offset
chambers reflected from the bottom and downstream walls. In so
doing, the reflected pressure within these chambers was higher than
that in the incident shock (Figures 5 - 7). Since the guinea pigs all
but filled the volume of the shallow chambers, significant reflections
did not occur and the incident shock pressures were considered to
be the 'dose" at the animal's location. The pressure "dose" for ani-
mais in the deep chamber was taken from gauge "c" in the lateral
wall of the chamber (Figure 6); and for animals in the deep-with-
offset chambers, the "dose" was taken from gauge "c" in the bottom
of the chamber (Figure 7).

-10-
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Table 3

RESULTS OF THE PROBIT ANALYSIS RELATING
LETHALITY TO OVERPRESSURE*

Chamber Number of LD50,
Geometry Guinea Pigs psi

Incident Shock

Shallow 40 34.9
(33. 4-47. 8)**

Deep 38 19.5
(17.4-21.0)

Deep-with-Offset 40 26.8
(24.2-29.6)

Reflected Pressure

Deep 38 34.6
(31.5-37.2)

Deep-with-Offset 40 35..9
(33.0-38.8)

*See text for wave forms and durations of the pressure
pulse.

**95-per cent confidence limits.

-12f



PRESSURE-TIME RECORDS ASSOCIATED
WITH THE SHALLOW CHAMBER

4.n

a 0.5 msec/div

' i

a 10.0 msec/div

gauge a

- 13- Figure 5



PRESSURE-TIME RECORDS ASSOCIATED
WITH THE DEEP CHAMBER

a b. O.5 sc/
.. 1 1

c 0.5 msec/div d 0.5 msec/div

gag agauge d
gauge a

gauge c

2-1/4"

-14- Figure 6



PRESSURE-TIME RECORDS ASSOCIATED WITH

.- ~THE DEPWT-FSTCHAMBER- --

'N.

gauge a 0.5 msec/div gauge b 0.5 msec/div

LA"

gauge c 0.5 msec/div gauge d 0.5 msec/div

- w
ggauge a

_,--c a-j-3/811 3-3/8'1

gaugegbuf8'gauge c 411gug

2-1/4"
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The LD 5 0 , in terms of the reflected pressure measured in
the deep and deep-with-offset chambers, was 34. 6 and 35. 9 psi,
respectively (Table 3). These LD50's were not signifirantly
different statistically nor were they different from the LD50
incident pressure of 34. 9 psi for animals in the shallow chambers.

It should be pointed out here, however, that even though the
pressure rose in a stepwise manner in the deep and deep-with-offset
chambers with respective times to maximal reflected pressures of
near 0. 20 and 0. 18 msec, the LD50 values were not importantly
different from those for guinea pigs subjected to near-instantaneous-
rising pressures in the long-duration range given in Figure i.
Apparently, time intervals of 0. 20 msec or less between arrival
of the pressure pulse and the occurrence of maximal pressure did
not alter the guinea pig's tolerance to overpressure from what it
would be for near-instantaneously rising pressures.

PATHOPHYSIOLOGIC OBSERVATIONS

The Time of Death for Fatally Blasted Animals

Figure 8 gives the cumulative per cent mortality curves for
small animals, dogs, and goats. As noted in the figure, the majority
of the animals died within 30 minutes after the blast. The averaged
curve for the small animals (mice, rats, guinea pigs, rabbits) and for
the goats compiled from published 2 and unpublished data were simi-
larly quite steep. On the other hand, the curve for the dogs was less
steep since more deaths occurred after 30 minutes. No explanation
can be offered at this time for the longer survival times of dogs.

Lung Hemorrhage

It is well, lknown that the gas-containing organs of the body are
most affected by air blast 6 - the eardrum being the most sensitive.
The lung, however, appears to be the "target" organ or the organ
whose injury is critical for the demise of the animal. Characteristi-
cally, massive bilateral lung hemoraage occurs as a result of blast
exposure, a fact reflected by an increase in lung weight. Figure 9,
from a previous study, 1, 6 shows the lung weights as a per cent of
body weight for a series of guinea pigs exposed to "sharp"'-rising,
long-duration overpressures. Note that, on the average, the lung
weights for animals surviving longer than I hour is lower than
those for lethally injured animals.

Similarly Figure iO, from a study in which guinea pigs were

-16-



co0

E
0

101

0% r- inal 0

f41'4 U3la Ajvnn



Es

0

u E__ _ _0
i-U) W 0

0 < 0 - at

E .2--- 2

0 co0 .~ --0 o~a
CC

00

att----------- 0 co
.r 

C- 
--0

0 *

< CD
0-i

0 00 EC

0 < I~
w 0@

E 00

C 04

W 0 1 +
at 0

.0 C *+*.+++++ --

0 c

-- En 00 C

.- 0

A --

00 %0 0 . +t*T N

++ +' ~
U.2 rS 0~

I - w in_

ýC N ++
*~ Ing 4 .

+ .

m ~ 04,.. C
00' a0

4 Ip __ --

0. 0 --

'0 cz +++0+4

4.., + 0 00
OCO . dj

Gla . c ~u



f- -

c OD

Je - W

C' 0 0

E E
w 1  .cs(-

0 00 W .

000

0 0

&0

0.

00

0b 0% a.. 0
- 000 0OD

0 so
,0001

a 0
. 0.-

00

0 0

0* 0)

000W 449( CLaw



exposed to "sharp"-rising overpressures of 3 - 4 msec duration, Z
gives lung weight data in relation to time of death for cases lethally
injured compared with those surviving two or more hours.

There are at least two striking additional findings portrayed
by Figures 9 and 10. The first is the fact that animals not infre-
quently die with near-normal values for the per cent lung weights
and survivors often yield figures that are two or threefold the
normal for the species. The second finding concerns the common
occurrence of coronary air emboli in lethally injured animals,
particularly those whose death is early. It is clear that any etio-
logic views of blast death must be consistent with these facts.

Air Emboli

It is believed that air bubbles entering the circulatory system
from the damaged lungs explain the experimental findings of arter-
ial air emboli in the coronary and cerebral vessels. Too, the
actual mechanism thought responsible for rapid death concerns air
emboli and the sequelae therefrom, particularly when the coronary
vessels are involved. 2, 5, 6, 11-15 Thus, death with a near-normal
lung weight can be explained by early heart failure associated with
massive coronary air embolism; i.e., there is not time for lung
hemorrhage to become marked. Animals succumbing with massive
lung hemorrhage apparently escape immediate coronary failure;
they may subsequently die quickly from coronary air embolism in-
volving fairly large vessels or linger and expire either from multiple
involvement of small coronary vessels and the early sequelae of
coronary air emboli or from continued lung hemorrhage and edema.
Seriously injured animals that survive several hours or days face
the hazards associated with severe heart and lung damage as wc!l
as possible infectious processes centered in the pulmonary tree.

Additional findings are given in Table 4 to supplement the
meager data documenting blast-induced air emboli in larger ani-
mals. 11-14 Air bubbles were found in autopsy in the coronary
arteries of 27 of 42 goats (64 per cent) and in 43 of 82 dogs (52 per
cent) killed by the blast. The incidence of air emboli in rabbits
and guinea pigs is also given.

Figure 11 shows the occurrence of coronary air emboli as a
function of time-to-death in 56 dogs expiring within two hours after
exposure to "sharp"-rising overpressures of different durations.
There were 43 instances of coronary air embolism, 39 of which
occurred in 42 animals whose death was recorded within 30 minutes
postshot.

-20-



Table 4

THE INCIDENCE OF CORONARY AIR EMBOLI
IN ANIMALS SUBJECTED TO AIR BLAST*

Number Number Number Dead with
Animal Species Blasted Dead Coronary Air Emboli

Goats 97 42 27
(43.3%6) (64. 3%/)

Dogs Z04 82 43
(40.2%) (5Z. 4%)

Rabbits 268 139 32
(51.9%) (Z3. 0%)

Guinea Pigs 273 156 66
(57. I1%) (42. 3%)

842 419 168
(49.8%) (40.1%)

'Overpressures rose almost instantaneously and were of

various durations.
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Figure 12 similarly shows the time of death and occurrence
of air emboli among 40 lethally injured goats whose deaths happened
within two hours after exposure to "sharp"-rising overpressures
of various durations. All the 26 instances of coronary air emboli
were_ noted in 35 animals expiring in the first 30 minutes postshot.

Neuromuscular Signs

Many of the animals killed by blast exhibited symptoms of
central nervous system damage such as ataxia, paralysis of the
fore and hind limbs, and tonic and clonic convulsive movements.
It has been suggested that cerebral air emboli are the cause of
these symptoms. 6, 12-15 The animals all appeared to be conscious
until very near death, but most of them could not walk - even when
they were placed on their feet by the experimenter.

Table 5 summarizes the number of surviving and non-surviving
dogs that did or did not walk postshot together with the time periods
involved. Of a sample of 55 dogs that died from the blast, only
five (9. 1 per cent) walked immediately after exposure. Three of
the five walked with difficulty (staggered). Of the remaining 50
dogs, only four managed locomotion: one each at 6, 10, 25, and
40 minutes after exposure. Forty-six dogs (83. 6 per cent) failed
to walk between the time of the blast and their death.

Of the 90 dogs that survived 24 hours, only six did not walk
(6. 7 per cent) ill that period. Thirty animals that could not walk
initially after exposure did so between 2 and 210 minutes postshot
(Table 5). Fifty-four dogs (60. 0 per cent) that survived walked
immediately postshot.

Table 6 summarizes the data for goats, which also show a
high percentage (68. 8) of those lethally blasted being unable to
walk.

Also worth considerable emphasis is the fact that animals after
significant exposure to blast seem "stunned" and "dazed" by the
experience. Characteristically also, they show no signs of pain
even when the abdomen or chest is palpated and pressure is applied
to the paw; i. e. , squeezing the foot pad of dogs or other animals
normally elicits prompt withdrawal of the limb. Lethargy and a
failure to respond to stimuli occurs even though there is clear
indication (in dogs) by head turning and tail wagging that the human
voice is heard and appreciated. Except for these and other central
nervous system signs and the frequent, but transient appearance of
blood at the nose or lips, the blasted animal classically exhibits a
misleading normal appearance in that there is little externally to
indicate the seriousness of the injury sustained.

-Z3-
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Table 5

POSTSHOT LOCOMOTION OF DOGS EXPOSED TO
"tSHARP" -RISING OVERPRESSURES OF VARIOUS DURATIONS

Number of Animals

Remarks Survivors Fatalities

Walked immediately postshot 54 (60.0%6) 5 (9.1%)

Walked at: 2 min 1

6 min - 1

10 mm 12 1

20 min 3 -

25 min 1

40 min 1
6 0 min 3 -

90 min 6 -

120 min 1 -

180 min 3 -

210 min 1 -

Failed to walk 6* (6.7%) 46** (83.6%6)

Total Number 90 55

"*Between test and 24-hour sacrifice.
**Between test and death - mostly short-survival times.

-25-



Table 6

POSTSHOT LOCOMOTION OF GOATS EXPOSED TO
"SHARP"-RISING OVERPRESSURES OF VARIOUS DURATIONS

Number of Animals

Remarks Survivors Fatalities

Walked immediately postshot 12 (46. 2%) 4 (25. 0o)

Walked at: 2 min 1 -

5 min 4 1

10 min 5 -

15 min 1 -

20 min 2 -

60 min 1 -

Failed to walk - 11* (68.8%)

Total Number 26 16

"Between test and death - mostly short-survival times.

-26-
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DISCUSSION

Human Air Blast Data

Though the animal data employed in this study for extrapola-
tion to an animal as large as man are not inconsistent with earlier
animal investigations in Germany1 2 - 14 and England, 14 it may be
said that the validity of information as an indication of the range of
mammalian response can and should be enhanced by extending the
investigations to include additional numbers of animals both
smaller and larger than man; i. e., cats, swine, goats, cattle,
horses, chimpanzees, etc.

Also, attention needs be directed to all air-blast data of a
quantitative or semi-quantitative nature applying to the human
case. Currently, only two bits of significant information in this
category are known to the authors. The first concerns a field
study in Great Britain involving estimations of overpressures pro-
duced by high-explosive bombs for 12 carefully selected instances
of human exposure. 16 The scaled overpressures ranged from 170
to 500 - 600 psi with only one fatality related with an overpressure
of 450 psi. The durations of the overpressures were not stated,
but were probably only a few milliseconds, since the bomb weights
for the time period in question ranged from 250 to 1000 lbs (ex-
plosive charges of near 125 - 500 lbs).

The second field study in Germany involved the exposure of 13
men in an anti-aircraft gun emplacemenm to blast from a 918-kg
bomb containing 552 kg of explosive. 14 Two deaths occurred at a
location where the estimated maximal overpressure was 235 psi
resulting from the reflection of an incident shock of 58 psi. The
duration of the overpressure was probably between 4 and 6 msec.

It is well to call attention to the fact that earlier tentative esti-
mates of man's tolerance to "fast"-rising overpressures of long
duration have been documented. 3, 17- The estimates were formu-
lated using then available portions of the data reported in this study.
The current estimates as set forth inrFigure 3 and Tables I and 2
are based upon considerable additional experimentation. They
represent, therefore, an extension and updating of previous work.
Since the figures suggested as applicable to man are only tentative
and because investigative and theoretical explorations continue, one
can expect more refined opinions will be forthcoming in the future.

-27-



Atypical Wave Forms

All the data employed in the present presentation concerning
the estimates of human tolerance refer to "fast"-rising over-
pressure having ideal or near-ideal wave forms. Though, as
pointed out previously, it is known that the tolerance of certain
mammals to overpressure increases for a variety of non-ideal
pulses of overpressure -particularly if the rising phase of the
pressure is delayed -- there is practically no useful information
to support extrapolation to the 70-kg mammal in this area. 1, 6
It is simply necessary to say that the quantitative effects of
smooth-rising overpressures and those reaching a maximum in
two or more steps must be studied further, especially in larger
animals, before any meaningful opinions concerning human toler-
ance under such circumstances can be set forth.

Threshold Damage

Similar uncertainties exist regarding the minimal over-
pressure that will produce lung hemorrhage in large as well as
small animals. The authors have expressed an opinion that, for
"fast"-rising long-duration overpressures, near 15 psi incident
overpressure or 6 psi in a geometry where reflection of pressure
may occur represents an "educated guess" for the threshold
pressure for lung damage in dogs and probably man. 3, 17-19
Clearly, it is not possible currently to render even an opinion on
what the value is for "fast"-rising short-duration overpressures
and for non-ideal wave forms. It is equally clear, however, that
this is an important area for future investigations.

Pathophy siolo gy

Though it has not been the intention of this paper to cover any
except selected, important portions of the pathophysiological data
relevant to the primary effects of air blast, it should be said that
damage to the ear, sinuses, and contents of the orbital and ab-
dominal cavities frequently occurs. Those wishing further infor-
mation are referred to: the excellent work of ClemedsonZ 1 in
Sweden which represents by far the most extensive effort that has
been directed to the pathophysiology of blast injury; the publi-
cations of Benzinger, 13 DeSaga t 4 and lMssleN whose investigations
in Germany give the most complete picture of blast pathology assem-
bled in a single source and the findings of the group working in
Albuquerque -6 8,10, i, 17-20,ZZ-24 whose papers contain refer-
ences to other scientists contributing to the field of blast and shock
biology.
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Blast Protection

It seems appropriate by way of emphasis to make two rather
obvious statements that sooner or later interests those who con-
temp]ate biological blast effects. The first is the fact that pri-
mary blast lesions are often complicated by secondary and terti-
ary damage from blast-energized debris and accelerative and
decelerative loading associated with displacement due to blast
shock, pressures and winds. Second, because of the rapid
lethality that characterizes exposure to overpressure and deceler-
ative impact25 as well as the serious nature of penetrating and
nonpenetrating wounds of the head and other critical portions of
the body, 26 the exploration of all possible means for blast pro-
tection is without a doubt indicated. 27, 28 In this regard, future
refinements of methods and techniques conceived to avoid the
damage typical of blast exposure should analytically consider all
the blast effects as well as others often associated with moder-n
weapon systems.

GENERAL

Finally, it is somewhat discouraging to note that little defini-
tive can be said concerning the ability of an animal or man to carry
on physical or mental activity after serious exposure to air blast.
DeSaga, 29 in a study performed for the Air Force of the German
Reich, stated an opinion based on animal experimentation and
field observations as follows: "Severely as well as slightly injured
persons - as soon as they have been exposed to a detonation - can
no longer be used as soldiers for military action, ducy or operations.
Published information also makes it clear that exercise after a sig-
nificant blast exposure is highly dangerous, and even moving a
severely blasted human case is contraindicated. 6

Be these things as they may, -there are certainly uncertainties
concerning the relation between the severity of blast darmage and
the activity of which man is capable. A quotation from a paper by
Williams 30 is pertinent: "An incident of interest ---------- occurred
during the campaign in Norway. Seven men on board one of H. M.
ships were in the vicinity of a magazine hatch when the ship blew
up. These men managed to reach shore, but one of them felt so ill
that he was unable to stand and had to be carried by his comrades
to shelter in a school, where the party turned in for the night. The

sick man was horrified to wake the next morning and see the re-
maining six men lying with rather blue faces and to be informed that
they were all dead."
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